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Abstract

In this paper, we address one of the questions raised by Rieffel in his collection of questions
on deformation quantization. The question is whether theK-theory groups remain the same under
flabby strict deformation quantizations. By “deforming” the question slightly, we produce a negative
answer to the question.
© 2002 Elsevier Science B.V. All rights reserved.
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In his collection of questions on deformation quantization[10], Rieffel asked the follow-
ing: “Are theK-groups of theC∗-algebra completions of the algebras of any flabby strict
deformation quantization all isomorphic?” Up to my knowledge, the question is still open.
But this paper will show that the answer is negative if we ask the same question for the case
of orbifolds.

Definition 1 (Rieffel [10]). Let (M, {·; ·}) be a Poisson manifold. A strict deformation
quantization ofM in the direction of{·, ·} is a dense∗-algebraA ofC∞(M)which is closed
under the Poisson bracket, together with a closed subsetI of the real line containing 0 as a
non-isolated point, and for each� ∈ I an associative product∗�, an involution∗�, and a
pre-C∗-norm‖·‖� onA, which for� = 0 are the original pointwise multiplication, complex
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conjugation, and supremum norm, respectively, and such that

(1) {A�}�∈I forms a continuous fields ofC∗-algebras overI , whereA� is theC∗-completion
of A� = (A, ‖ · ‖�),

(2) for f , g ∈ A∥∥∥∥f ∗� g − g ∗� f√−1�
− {f, g}

∥∥∥∥
�

→ 0 as� → 0.

This definition still makes sense for a simple Poisson orbifoldM/Γ , whereΓ is a
finite group acting onM and the action preserves the Poisson bracket. A function on
M/Γ is just a function onM which is constant on each orbit. A functionf onM/Γ

is defined to be smooth if it is smooth as a function onM.

Definition 2. A strict deformation quantization isflabbyif A as above, containsC∞
c (M),

the algebra of smooth functions of compact support onM. This notion also makes sense
for M/Γ as above.

There is more algebraic version of deformation quantization, called theformal defor-
mation quantization. A formal deformation quantization ofM is defined as an associative
algebra structure∗ onC∗(M)[[�]] (� is a formal letter) such that, forf, g ∈ C∗(M)

f ∗ g = fg +
√−1

2
{f, g}� + B2(f, g)�

2 + B3(f, g)�
3 + · · · ,

whereBi ’s are bidifferential operators. Using ideas from string theory, Kontsevich[6]
proved that any Poisson manifold is formally deformally deformation quantizable.

Now, we consider the example of a strict deformation quantization of tori[8]. We use real
coordinates(x1, . . . , xn) for then-torusT n, viewingT n asRn/Zn. Any real skew-symmetric
matrixΘ defines a Poisson bracket onC∞(T n)

{f, g} :=
∑
j,k

θjk
∂f

∂xj

∂g

∂xk
for f, g ∈ C∞(T n).

The Fourier transformFmapsC∞(T n) toS(Zn), the space of complex-valued Schwartz
functions. Recall thatF(f ) ∈ S(Zn), f ∈ C∞(T n), is defined as follows, forp ∈ Zn

f̂ (p) := F(f )(p) =
∫
T n

exp(2π
√−1x · p)f (x)dx,

where dx is the Haar measure with
∫
T n 1 dx. F is invertible, and its inverse is given by

φ →
∑
p∈Zn

φ(p)exp(2π
√−1p · x).

F carries the Poisson bracket to

{φ,ψ}(p) = −4π2
∑
q

φ(q)ψ(p − q)γ (q, p − q)



J.-K. Shim / Journal of Geometry and Physics 44 (2003) 475–480 477

for φ,ψ ∈ S(Z)n, where

γ (p, q) =
∑
j,k

θjkpjqk.

For any� ∈ R, we define a functionσ� onZn × Zn by

σ�(p, q) = exp(−π
√−1�γ (p, q)),

and then define a deformed convolution product

(φ ∗� ψ)(p) =
∑
q

φ(q)ψ(p − q)σ�(q, p − q).

The involution onS(Zn) is defined, independent of�, as follow:

φ∗(p) = φ̄(−p)

which, under the inverse of the Fourier transform, is just the complex conjugation on
C∞(T n).

Define a norm‖ · ‖� on S(Zn) as the operator norm for the action ofS(Zn) on l2(Zn)

given byφ · ξ = φ ∗ �ξ . We defineC� to beC∞(T n) with the product, the involution, and
the norm obtained by pulling back, via the Fourier transform, the product∗�, the involution,
and norm‖ · ‖� we defined above. Then{C�}�∈R is a strict deformation quantization of the
Poisson manifold(T n,Θ).
AΘ is defined asC1, the algebra for� = 1. Then, by definition,C� = A�Θ . An easy

computation shows that

UkUj = exp(2π iθjk)UjUk,

whereUi = exp(2π
√−1xi). The envelopingC∗-algebraĀΘ of AΘ is the universal

C∗-algebra generated byn unitary operators satisfying the above relations.ĀΘ is calledthe
non-commutative torus. The non-commutative tori appear naturally inM-theory compact-
ification [3].

We define aZ2-action onT n by

γ · (x1, . . . , xn) = (−x1, . . . ,−xn),

whereγ is the non-identity element ofZ2. (From now on,γ will denote the non-identity
element ofZ2.) ThisZ2-action on(T n,Θ) preserves the Poisson bracket, i.e.,

{f γ , gγ } = {f, g}γ ,
wheref γ is defined asf γ (x) = f (−x). Also, the strict deformation quantization of
(T n − Θ) defined as above is invariant under theZ2-action, i.e.,

f γ ∗� gγ = (f ∗� g)γ .
Hence the strict deformation quantization of(T n,Θ) restricts to a strict deformation quan-
tization of the Poisson orbifoldT n/Z2, which is flabby. A smooth functionf on T n/Z2
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is just an smooth even function onT n, i.e.,f (−x) = f (x). This strict deformation quan-
tization is given by{Aσ

�Θ
}�∈R. Aσ

Θ denotes the subalgebra ofAΘ which consists of even
functions inAΘ . Its closureĀσ

Θ in ĀΘ consists of even functions in̄AΘ . Āσ
Θ is called the

symmetrized non-commutative torus.
We will simply write Up for exp(2π

√−1p · x). Note that(Up)
γ = U−p = (Up)

∗.
The difference between the action byγ and the∗-operation is that the former is linear
but the latter is conjugate-linear. Then the dense subalgebraAσ

Θ of Āσ
Θ consists of linear

combinations of{Up + U−p|p ∈ Zn}.

Theorem 1. Assume that there exists an entryθjk ofΘ such that4θjk is not an integer. Then
the symmetrized non-commutative torusĀσ

Θ is Morita-equivalent toĀΘ � Z2.

Proof. (For the notion of Morita-equivalence, see[7]). We letC andD denote the algebra
C(Z2, AΘ) and the dense subalgebraAσ

Θ of Āσ
Θ , respectively, whereC(Z2, AΘ) is the set

of maps fromZ2 toAΘ . Recall that the product onC(Z2, AΘ) is given as follows:

(ΛΨ )(e) = Λ(e)Ψ (e) + Λ(γ )Ψ (γ ))γ , (ΛΨ )(γ ) = Λ(e)Ψ (γ ) + Λ(γ )Ψ (e))γ ,

wheree it the additive identity ofZ2. For aC–D bimodule, we takeE = AΘ . The right
D-module structure onE is given by right multiplications. AD-valued inner product onE
is defined by

〈U,V 〉D = U∗V + (U∗)γ V γ .

The leftC-module structure onE is given as follows: forΨ ∈ C,U ∈ E,
Ψ · U = Ψ (e)U + Ψ (γ )Uγ .

We define aC-valued inner product

〈U,V 〉C(e) = UV∗, 〈U,V 〉C(γ ) = U(V ∗)γ ,

wheree is the identity element ofZ2. Easily, we have

〈U,V 〉C · W = U · 〈V,W 〉D,
which is one of the requirements in the definition of Morita-equivalence.

We proceed to prove that the linear span〈E, E〉C of {〈x, y〉C |x, y ∈ E} is all ofC. Since
〈E, E〉C is not just a vector space but an ideal ofC, we only need to show that the identity
elementΦ0 of C lies in 〈E, E〉C , where the identity elementΦ0 is given byΦ0(e) = 1 and
Φ0(γ ) = 0. By the assumption, we have an entryθjk such that 4θjk is not an integer. We
define an elementΛ ∈ C byΛ(e) = U−2

j , Λ(γ ) = −U−2
j U2

k U
2
j . Then we have

Λ(〈Uj ,U
−1
j 〉C − 〈Uk,U

−1
k 〉C + 〈U2

k ,1〉C) = (1 − e8π
√−1θjk)Φ0.

Since 1− exp(8π
√−1θjk) is different from 0, the identity elementΦ0 lies in 〈E, E〉C .

Therefore〈E, E〉C is dense inĀΘ � Z2.
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It is clear that〈E, E〉D is dense inĀσ
Θ . Indeed, for anyp ∈ Zn,

〈1, U−p〉D = Up + U−p.

The inequalities required in the definition of Morita-equivalence are also clearly satisfied.
Therefore,E completes into a Morita-equivalence bimodule betweenĀΘ �Z2 andĀσ

Θ . �

HenceĀΘ�Z2 andĀσ
Θ have the sameK-theory groups, providedΘ satisfies the assumption

in the above theorem. Therefore, we have the following theorem, which was proved for the
case ofΘ being totally irrational[4].

Theorem 2. Assume thatΘ has an entryθjk such that4θjk is not an integer. Then

K0(Ā
σ
Θ) = Z3·2n−1

, K1(Ā
σ
Θ) = 0.

Proof. SinceK0(ĀΘ) = K1(ĀΘ) = Z2n−1
[9] for any real skew-symmetric matrixΘ, the

same reasoning as in Theorem 7 of[4] also works for this case. �

For an abelian groupG, we define rk(G) as the rank of the free abelian groupG/tor(G).
Here tor(G) denotes the torsion subgroup ofG.

Theorem 3. rk(K0(T 4/Z2)) is greater than24.

Proof. The spaceT 4/Z2 has 16 singularities, which we enumerate byp1, . . . , p16.
If we blow them up, we obtain aK3 surfaceZ. (For K3 surfaces and their signifi-
cance in string theory, see[1].) We letXk be the space obtained fromT 4/Z2 by blow-
ing up the firstk points p1, . . . , pk. HenceX16 = Z. We consider the pair(S3, Z),
whereS3 is the 3-sphere to which the pointp16 has been blown up. Then the one point
compactification ofZ − S3 is X15. We consider the following 6-term exact sequence in
K-theory[5]

FromH ev(Z,Q) ∼= Q24 andH odd(Z,Q) = 0 [2], we have

rk(K0(Z)) = 24, rk(K1(Z)) = 0.

Since imi∗1 is a subgroup ofK1(S3) ∼= Z, im i∗1 must be 0. It means that∂1 is injective.
Therefore kerq∗

1
∼= Z. SinceK0(Z)/im q∗

1 is isomorphic to a subgroup ofK0(S3) ∼= Z,
we have rk(imq∗

1) ≥ rk(K0(Z)) − 1 = 23. The fact that rk(kerq∗
1) = 1 implies that

rk(K0(Z − S3) ≥ 24. Consequently, we have

rk(K0(X15)) = rk(K0(Z − S3) ⊕ Z) ≥ 25.
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Now, fork = 1, . . . , n−1, we consider the pair(S3, Xk), whereS3 is the 3-sphere to which
the pointpk has been blown up. Then the exact sequence

K0(Xk − S3) → K0(Xk) → K0(S3) ∼= Z

gives us the inequality rk(K0(Xk − S3)) ≥ rk(K0(Xk)) − 1. SinceXk−1 is the one-point
compactification ofXk − S3, we have

rk(K0(Xk−1)) ≥ rk(K0(Xk)).

Hence it follows that rk(K0(T 4/Z2)) ≥ 25. �

Remark. LetΘ be a non-zero 4×4 real skew-symmetric matrix. Then we can find a number
s such thatsΘ satisfies the assumption ofTheorem 1. HenceK0(Ā

σ
sΘ) = Z24, which

is different fromK0(Ā
σ
0·Θ) = K0(C(T

4/Z2)). Therefore, the flabby strict deformation
quantization{Aσ

tΘ}t∈R of the Poisson orbifoldT 4/Z2 gives us an example, whereK∗(Āσ
tΘ)

varies ast varies.
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